Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Clin Med ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38592158

RESUMO

Background: Percutaneous spinal cord epidural stimulation (pSCES) has effectively restored varying levels of motor control in persons with motor complete spinal cord injury (SCI). Studying and standardizing the pSCES configurations may yield specific motor improvements. Previously, reliance on the amplitude of the SCES-evoked potentials (EPs) was used to determine the correct stimulation configurations. Methods: We, hereby, retrospectively examined the effects of wide and narrow-field configurations on establishing the motor recruitment curves of motor units of three different agonist-antagonist muscle groups. Magnetic resonance imaging was also used to individualize SCI participants (n = 4) according to their lesion characteristics. The slope of the recruitment curves using a six-degree polynomial function was calculated to derive the slope ratio for the agonist-antagonist muscle groups responsible for standing. Results: Axial damage ratios of the spinal cord ranged from 0.80 to 0.92, indicating at least some level of supraspinal connectivity for all participants. Despite the close range of these ratios, standing motor performance was enhanced using different stimulation configurations in the four persons with SCI. A slope ratio of ≥1 was considered for the recommended configurations necessary to achieve standing. The retrospectively identified configurations using the supine slope ratio of the recruitment curves of the motor units agreed with that visually inspected muscle EPs amplitude of the extensor relative to the flexor muscles in two of the four participants. Two participants managed to advance the selected configurations into independent standing performance after using tonic stimulation. The other two participants required different levels of assistance to attain standing performance. Conclusions: The findings suggest that the peak slope ratio of the muscle agonists-antagonists recruitment curves may potentially identify the pSCES configurations necessary to achieve standing in persons with SCI.

2.
Eur J Transl Myol ; 34(1)2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526419

RESUMO

Scientific conferences increasingly suffer from the need for short presentations in which speakers like to dwell on the details of their work. A mitigating factor is to encourage discussion and planning of collaborations by organizing small meetings in a hotel large enough to host all attendees. This extends discussions' opportunities during morning breakfasts, lunches, dinners and long evenings together. Even if the vast majority of participants will not stay for the entire duration of the Conference, the possibilities for specialists to interact with specialists who are even very distant in terms of knowledge increase enormously. In any case, the results in terms of new job opportunities for young participants outweigh the costs for the organizers. Thirty years of Padova Muscle Days offer many examples, but the authors of this report on the state of the art of Mobility Medicine testify that this also happened in the 2024 Five Days of Muscle and Mobility Medicine (2024Pdm3) hosted at the Hotel Petrarca, Thermae of Euganea Hills and Padua, Italy which is in fact a valid countermeasure to the inevitable tendencies towards hyperspecialization that the explosive increase in scientific progress brings with it.

3.
Artif Organs ; 48(4): 421-425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38339848

RESUMO

The annual conference of the International Functional Electrical Stimulation Society (IFESS) was held in conjunction with the 7th RehabWeek Congress, from September 24 to 28, 2023 at the Resorts World Convention Centre on Sentosa Island, in Singapore. The Congress was a joint meeting of the International Consortium on Rehabilitation Technology (ICRT) together with 10 other societies in the field of assistive technology and rehabilitation engineering. The conference features comprehensive blend of technical and clinical context of FES, a sustained value the society has offered over many years. The cross- and inter- disciplinary approach of medicine, engineering, and science practiced in the FES community had enabled vibrant interaction, creation, and development of impactful and novel contributions to the field of FES, translating FES directly into highly relevant and sustainable solutions for the users.


Assuntos
Terapia por Estimulação Elétrica , Sociedades Médicas , Estimulação Elétrica
4.
Br J Nutr ; 131(3): 489-499, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-37726106

RESUMO

In chronic spinal cord injury (SCI), individuals experience dietary inadequacies complicated by an understudied research area. Our objectives were to assess (1) the agreement between methods of estimating energy requirement (EER) and estimated energy intake (EEI) and (2) whether dietary protein intake met SCI-specific protein guidelines. Persons with chronic SCI (n = 43) completed 3-day food records to assess EEI and dietary protein intake. EER was determined with the Long and Institute of Medicine (IOM) methods and the SCI-specific Farkas method. Protein requirements were calculated as 0·8-1·0 g/kg of body weight (BW)/d. Reporting accuracy and bias were calculated and correlated to body composition. Compared with IOM and Long methods (P < 0·05), the SCI-specific method did not overestimate the EEI (P = 0·200). Reporting accuracy and bias were best for SCI-specific (98·9 %, -1·12 %) compared with Long (94·8 %, -5·24 %) and IOM (64·1 %, -35·4 %) methods. BW (r = -0·403), BMI (r = -0·323) and total fat mass (r = -0·346) correlated with the IOM reporting bias (all, P < 0·05). BW correlated with the SCI-specific and Long reporting bias (r = -0·313, P = 0·041). Seven (16 %) participants met BW-specific protein guidelines. The regression of dietary protein intake on BW demonstrated no association between the variables (ß = 0·067, P = 0·730). In contrast, for every 1 kg increase in BW, the delta between total and required protein intake decreased by 0·833 g (P = 0·0001). The SCI-specific method for EER had the best agreement with the EEI. Protein intake decreased with increasing BW, contrary to protein requirements for chronic SCI.


Assuntos
Ingestão de Energia , Traumatismos da Medula Espinal , Humanos , Proteínas na Dieta/metabolismo , Metabolismo Energético , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Peso Corporal , Composição Corporal
5.
Front Neurosci ; 17: 1284581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144208

RESUMO

Descending motor signals are disrupted after complete spinal cord injury (SCI) resulting in loss of standing and walking. We previously restored standing and trunk control in a person with a T3 complete SCI following implantation of percutaneous spinal cord epidural stimulation (SCES). We, hereby, present a step-by-step procedure on configuring the SCES leads to initiate rhythmic lower limb activation (rhythmic-SCES) resulting in independent overground stepping in parallel bars and using a standard walker. Initially, SCES was examined in supine lying at 2 Hz before initiating stepping-like activity in parallel bars using 20 or 30 Hz; however, single lead configuration (+2, -5) resulted in lower limb adduction and crossing of limbs, impairing the initiation of overground stepping. After 6 months, interleaving the original rhythmic-SCES with an additional configuration (-12, +15) on the opposite lead, resulted in a decrease of the extensive adduction tone and allowed the participant to initiate overground stepping up to 16 consecutive steps. The current paradigm suggests that interleaving two rhythmic-SCES configurations may improve the excitability of the spinal circuitry to better interpret the residual descending supraspinal signals with the ascending proprioceptive inputs, resulting in a stepping-like motor behavior after complete SCI.

6.
Front Neurol ; 14: 1254760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808500

RESUMO

Objective: To examine the combined effects of neuromuscular electrical stimulation-resistance training (NMES-RT) and functional electrical stimulation-lower extremity cycling (FES-LEC) compared to passive movement training (PMT) and FES-LEC in adults with SCI on (1) oxygen uptake (VO2), insulin sensitivity and glucose disposal in adults with SCI; (2) Metabolic and inflammatory biomarkers; (3) skeletal muscle, intramuscular fat (IMF) and visceral adipose tissue (VAT) cross-sectional areas (CSAs). Materials and methods: Thirty-three participants with chronic SCI (AIS A-C) were randomized to 24 weeks of NMES-RT + FES or PMT + FES. The NMES-RT + FES group underwent 12 weeks of evoked surface NMES-RT using ankle weights followed by an additional 12 weeks of progressive FES-LEC. The control group, PMT + FES performed 12 weeks of passive leg extension movements followed by an additional 12 weeks of FES-LEC. Measurements were performed at baseline (BL; week 0), post-intervention 1 (P1; week 13) and post-intervention 2 (P2; week 25) and included FES-VO2 measurements, insulin sensitivity and glucose effectiveness using the intravenous glucose tolerance test; anthropometrics and whole and regional body composition assessment using dual energy x-ray absorptiometry (DXA) and magnetic resonance imaging to measure muscle, IMF and VAT CSAs. Results: Twenty-seven participants completed both phases of the study. NMES-RT + FES group showed a trend of a greater VO2 peak in P1 [p = 0.08; but not in P2 (p = 0.25)] compared to PMT + FES. There was a time effect of both groups in leg VO2 peak. Neither intervention elicited significant changes in insulin, glucose, or inflammatory biomarkers. There were modest changes in leg lean mass following PMT + FES group. Robust hypertrophy of whole thigh muscle CSA, absolute thigh muscle CSA and knee extensor CSA were noted in the NMES-RT + FES group compared to PMT + FES at P1. PMT + FES resulted in muscle hypertrophy at P2. NMES-RT + FES resulted in a decrease in total VAT CSA at P1. Conclusion: NMES-RT yielded a greater peak leg VO2 and decrease in total VAT compared to PMT. The addition of 12 weeks of FES-LEC in both groups modestly impacted leg VO2 peak. The addition of FES-LEC to NMES-RT did not yield additional increases in muscle CSA, suggesting a ceiling effect on signaling pathways following NMES-RT. Clinical trial registration: identifier NCT02660073.

7.
J Clin Med ; 12(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176591

RESUMO

Electrical stimulation exercise has become an important modality to help improve the mobility and health of individuals with spinal cord injury (SCI). Electrical stimulation is used to stimulate peripheral nerves in the extremities to assist with muscle strengthening or functional activities such as cycling, rowing, and walking. Electrical stimulation of the peripheral nerves in the upper extremities has become a valuable tool for predicting the risk of hand deformities and rehabilitating functional grasping activities. The purpose of this paper is to provide healthcare providers perspective regarding the many rehabilitation uses of electrical stimulation in diagnosing and treating individuals with SCI. Electrical stimulation has been shown to improve functional mobility and overall health, decrease spasticity, decrease the risk of cardiometabolic conditions associated with inactivity, and assist in the diagnosis/prognosis of hand deformities in those with tetraplegia. Studies involving non-invasive stimulation of the spinal nerves via external electrodes aligned with the spinal cord and more invasive stimulation of electrodes implanted in the epidural lining of the spinal cord have demonstrated improvements in the ability to stand and enhanced the stepping pattern during ambulation. Evidence is also available to educate healthcare professionals in using functional electrical stimulation to reduce muscle spasticity and to recognize limitations and barriers to exercise compliance in those with SCI. Further investigation is required to optimize the dose-response relationship between electrical stimulation activities and the mobility and healthcare goals of those with SCI and their healthcare providers.

9.
Nat Commun ; 14(1): 2064, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045845

RESUMO

Two persons with chronic motor complete spinal cord injury (SCI) were implanted with percutaneous spinal cord epidural stimulation (SCES) leads to enable motor control below the injury level (NCT04782947). Through a period of temporary followed by permanent SCES implantation, spinal mapping was conducted primarily to optimize configurations enabling volitional control of movement and training of standing and stepping as a secondary outcome. In both participants, SCES enabled voluntary increased muscle activation and movement below the injury and decreased assistance during exoskeleton-assisted walking. After permanent implantation, both participants voluntarily modulated induced torques but not always in the intended directions. In one participant, percutaneous SCES enabled motor control below the injury one-day following temporary implantation as confirmed by electromyography. The same participant achieved independent standing with minimal upper extremity self-balance assistance, independent stepping in parallel bars and overground ambulation with a walker. SCES via percutaneous leads holds promise for enhancing rehabilitation and enabling motor functions for people with SCI.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Masculino , Eletromiografia , Movimento , Músculo Esquelético , Medula Espinal , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/complicações
10.
Br J Nutr ; 130(10): 1720-1731, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37092679

RESUMO

Studying factors that contribute to our understanding of maintaining normal energy balance are of paramount significance following spinal cord injury (SCI). Accurate determination of energy needs is crucial for providing nutritional guidance and managing the increasing prevalence of malnutrition or obesity after SCI. BMR represents 75-80 % of the total energy expenditure in persons with SCI. Accurately measuring BMR is an important component for calculating total energetic needs in this population. Indirect calorimetry is considered the gold-standard technique for measuring BMR. However, technical challenges may limit its applications in large cohort studies and alternatively rely on prediction equations. Previous work has shown that BMR changes in response to disuse and exercise in the range of 15-120 %. Factors including sex, level of injury and type of assistive devices may influence BMR after SCI. RMR is erroneously used interchangeably for BMR, which may result in overestimation of energetic intake when developing nutritional plans. To address this concern, we comprehensively reviewed studies that conducted BMR (n=15) and RMR (n=22) in persons with SCI. The results indicated that RMR is 9 % greater than BMR in persons with SCI. Furthermore, the SCI-specific prediction equations that incorporated measures of fat-free mass appeared to accurately predict BMR. Overall, the current findings highlighted the significance of measuring BMR as well as encouraging the research and clinical community to effectively establish countermeasures to combat obesity after SCI.


Assuntos
Metabolismo Basal , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/complicações , Metabolismo Energético , Obesidade , Calorimetria Indireta , Composição Corporal
11.
Front Neurosci ; 17: 1112853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875669

RESUMO

Importance: There is a revived interest to explore spinal cord epidural stimulation (SCES) to improve physical function after spinal cord injury (SCI). This case report highlights the potential of eliciting multiple functional improvements with a single SCES configuration, a strategy which could improve clinical translation. Objective: To determine whether SCES intended to facilitate walking also acutely yields benefits in cardiovascular autonomic regulation and spasticity. Design: Case report from data collected at two timepoints 15 weeks apart from March to June 2022 as part of a larger clinical trial. Setting: Research lab at Hunter Holmes McGuire VA Medical Center. Participant: 27-year-old male, 7 years post a C8 motor complete spinal cord injury. Intervention: A SCES configuration intended to enhance exoskeleton-assisted walking training applied for autonomic and spasticity management. Main outcomes and measures: The primary outcome was cardiovascular autonomic response to a 45-degree head-up-tilt test. Systolic blood pressure (SBP), heart rate (HR), and absolute power of the low-frequency (LF) and high-frequency (HF) components of a heart-rate variability analysis were collected in supine and tilt with and without the presence of SCES. Right knee flexor and knee extensor spasticity was assessed via isokinetic dynamometry with and without SCES. Results: At both assessments with SCES off, transitioning from supine to tilt decreased SBP (assessment one: 101.8 to 70 mmHg; assessment two: 98.9 to 66.4 mmHg). At assessment one, SCES on in supine (3 mA) increased SBP (average 117 mmHg); in tilt, 5 mA stabilized SBP near baseline values (average 111.5 mmHg). At assessment two, SCES on in supine (3 mA) increased SBP (average 140 mmHg in minute one); decreasing amplitude to 2 mA decreased SBP (average 119 mmHg in minute five). In tilt, 3 mA stabilized SBP near baseline values (average 93.2 mmHg). Torque-time integrals at the right knee were reduced at all angular velocities for knee flexors (range: -1.9 to -7.8%) and knee extensors (range: -1 to -11.4%). Conclusions and relevance: These results demonstrate that SCES intended to facilitate walking may also enhance cardiovascular autonomic control and attenuate spasticity. Using one configuration to enhance multiple functions after SCI may accelerate clinical translation. Clinical trial registration: https://clinicaltrials.gov/ct2/show/, identifier NCT04782947.

12.
Spinal Cord ; 61(4): 276-284, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36899099

RESUMO

STUDY DESIGN: Cross-sectional study. OBJECTIVES: To compare muscle size, body composition, bone mineral density (BMD), and metabolic profiles in denervated versus innervated individuals with spinal cord injury (SCI). SETTING: Hunter Holmes McGuire Veterans Affairs (VA) Medical Center. METHODS: Body composition, bone mineral density (BMD), muscle size, and metabolic parameters were collected in 16 persons with chronic SCI (n = 8 denervated, n = 8 innervated) using dual-energy x-ray absorptiometry (DXA), magnetic resonance imaging (MRI), and fasting blood samples. BMR was measured by indirect calorimetry. RESULTS: Percent differences of the whole thigh muscle cross-sectional area (CSA; 38%), knee extensor CSA (49%), vasti CSA (49%), and rectus femoris CSA (61%) were smaller in the denervated group (p < 0.05). Leg lean mass was also lower (28%) in the denervated group (p < 0.05). Whole muscle intramuscular fat (IMF%; 15.5%), knee extensor IMF% (22%), and % fat mass (10.9%) were significantly greater in the denervated group (p < 0.05). Knee distal femur and proximal tibia BMD were lower in the denervated group, 18-22% and 17-23%; p < 0.05. Certain indices of metabolic profile were more favorable in the denervated group though were not significant. CONCLUSIONS: SCI results in skeletal muscle atrophy and dramatic changes in body composition. Lower motor neuron (LMN) injury results in denervation of the lower extremity muscles which exacerbates atrophy. Denervated participants exhibited lower leg lean mass and muscle CSA, greater muscle IMF, and reduced knee BMD compared to innervated participants. Future research is needed to explore therapeutic treatments for the denervated muscles after SCI.


Assuntos
Densidade Óssea , Traumatismos da Medula Espinal , Humanos , Densidade Óssea/fisiologia , Estudos Transversais , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/metabolismo , Extremidade Inferior , Absorciometria de Fóton/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Denervação
13.
J Clin Med ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769503

RESUMO

Spinal cord injury (SCI) is a debilitating condition that can significantly affect an individual's life, causing paralysis, autonomic dysreflexia, and chronic pain. Transspinal stimulation (TSS) is a non-invasive form of neuromodulation that activates the underlying neural circuitries of the spinal cord. Application of TSS can be performed through multiple stimulation protocols, which may vary in the electrodes' size or position as well as stimulation parameters, and which may influence the response of motor functions to the stimulation. Due to the novelty of TSS, it is beneficial to summarize the available evidence to identify the range of parameters that may provide the best outcomes for motor response. The PubMed and Google Scholar databases were searched for studies examining the effects of TSS on limb motor function. A literature search yielded 34 studies for analysis, in which electrode placement and stimulation parameters varied considerably. The stimulation protocols from each study and their impact on limb motor function were summarized. Electrode placement was variable based on the targeted limb. Studies for the upper limbs targeted the cervical enlargement with anatomical placement of the cathode over the cervical vertebral region. In lower-limb studies, the cathode(s) were placed over the thoracic and lumbar vertebral regions, to target the lumbar enlargement. The effects of carrier frequency were inconclusive across the studies. Multisite cathodal placements yielded favorable motor response results compared to single-site placement. This review briefly summarized the current mechanistic evidence of the effect of TSS on motor response after SCI. Our findings indicate that optimization of stimulation parameters will require future randomized controlled studies to independently assess the effects of different stimulation parameters under controlled circumstances.

15.
Eur J Appl Physiol ; 123(3): 479-493, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36305973

RESUMO

The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.


Assuntos
Terapia por Estimulação Elétrica , Treinamento de Força , Traumatismos da Medula Espinal , Humanos , Baclofeno/metabolismo , Treinamento de Força/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estudos Retrospectivos , Músculo Esquelético/fisiologia , Espasticidade Muscular , Traumatismos da Medula Espinal/metabolismo , Hipertrofia/patologia , Terapia por Estimulação Elétrica/métodos
17.
J Clin Med ; 11(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431158

RESUMO

(1) Background: Resource intensive imaging tools have been employed to examine muscle and bone qualities after spinal cord injury (SCI). We tested the hypothesis that surface neuromuscular electrical stimulation (NMES) amplitude can be used to examine knee extensor muscle quality, distal femur and proximal tibia bone mineral density (BMD) in persons with SCI. (2) Methods: Seventeen persons (2 women) with chronic SCI participated in three weeks of NMES-resistance training twice weekly of 4 sets of 10 repetitions. Participants were classified according to the current amplitude (>100 mA) and the number of repetitions (>70 reps) of leg extension into greater (n = 8; 1 woman; group A) and lower (n = 9; 1 woman; group B) musculoskeletal qualities. Magnetic resonance imaging, dual energy x-ray absorptiometry, isometric peak torque, Modified Ashworth and Penn spasm frequency scales were conducted. (3) Results: In between group comparisons, current amplitude was lower (38−46%) in group A. Whole (27−32%; p = 0.02), absolute (26−33%, p = 0.02) thigh muscle and absolute knee extensor muscle cross-sectional areas (22−33%, p = 0.04) were greater in group A. Right distal femur (24%; p = 0.08) and proximal tibia (29%; p = 0.03) BMDs were lower in group B, and peak isometric torque (p < 0.01), extensor spasticity scorers (p = 0.04) and muscle spasm scores (p = 0.002) were significantly higher in group A. Regression models revealed that amplitude of current, repetitions and body weight can accurately predict musculoskeletal qualities in persons with SCI. (4) Conclusions: Surface NMES amplitude and repetitions of leg extension differentiated between SCI survivors with greater versus lower musculoskeletal qualities. The study may shed the light on the interplay between muscle and bone in persons with SCI.

18.
BMJ Open ; 12(10): e064748, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198461

RESUMO

INTRODUCTION: Long pulse width stimulation (LPWS; 120-150 ms) has the potential to stimulate denervated muscles and to restore muscle size in denervated people with spinal cord injury (SCI). We will determine if testosterone treatment (TT)+LPWS would increase skeletal muscle size, leg lean mass and improve overall metabolic health in persons with SCI with denervation. We hypothesise that the 1-year TT+LPWS will upregulate protein synthesis pathways, downregulate protein degradation pathways and increase overall mitochondrial health. METHODS AND ANALYSIS: Twenty-four male participants (aged 18-70 years with chronic SCI) with denervation of both knee extensor muscles and tolerance to the LPWS paradigm will be randomised into either TT+neuromuscular electrical stimulation via telehealth or TT+LPWS. The training sessions will be twice weekly for 1 year. Measurements will be conducted 1 week prior training (baseline; week 0), 6 months following training (postintervention 1) and 1 week after the end of 1 year of training (postintervention 2). Measurements will include body composition assessment using anthropometry, dual X-ray absorptiometry and MRI to measure size of different muscle groups. Metabolic profile will include measuring of basal metabolic rate, followed by blood drawn to measure fasting biomarkers similar to hemoglobin A1c, lipid panels, C reactive protein, interleukin-6 and free fatty acids and then intravenous glucose tolerance test to test for insulin sensitivity and glucose effectiveness. Finally, muscle biopsy will be captured to measure protein expression and intracellular signalling; and mitochondrial electron transport chain function. The participants will fill out 3 days dietary record to monitor their energy intake on a weekly basis. ETHICS AND DISSEMINATION: The study was approved by Institutional Review Board of the McGuire Research Institute (ID # 02189). Dissemination plans will include the Veteran Health Administration and its practitioners, the national SCI/D services office, the general healthcare community and the veteran population, as well as the entire SCI community via submitting quarterly letters or peer-review articles. TRIAL REGISTRATION NUMBER: NCT03345576.


Assuntos
Traumatismos da Medula Espinal , Testosterona , Biomarcadores , Proteína C-Reativa/metabolismo , Ácidos Graxos não Esterificados , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Músculo Esquelético , Ensaios Clínicos Controlados Aleatórios como Assunto , Traumatismos da Medula Espinal/terapia
19.
J Spinal Cord Med ; 45(6): 833-839, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129335

RESUMO

OBJECTIVE: To investigate the relationships between percentage fat mass (%FM), percentage lean mass (%LM), and the ratio of %FM to %LM with pro-inflammatory adipokines and metabolic syndrome in individuals with chronic spinal cord injury (SCI). DESIGN: Observational, cross-sectional. Linear and logistic regression were used to examine the associations between the %FM, %LM, and the %FM to %LM ratio with inflammatory markers and metabolic syndrome, respectively. PARTICIPANTS: Seventy chronic SCI men and women. MAIN OUTCOME MEASURES: %FM, %LM, %FM to %LM ratio; fasting lipids, glucose, and tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and high-sensitivity c-reactive protein (hs-CRP); metabolic syndrome as determined by The International Diabetes Federation criteria. RESULTS: There were significant correlations between %FM, %LM and the %FM to %LM ratio with hs-CRP. The %LM beta coefficient value was negative and greater than the beta coefficient value for %FM. The %FM to %LM ratio had the strongest correlation with hs-CRP and showed the only significant relationship with IL-6. There were strong significant correlations between %FM, %LM and the %FM to %LM ratio with metabolic syndrome. However, the %FM to %LM ratio, again, showed the strongest relationship indicating that it may be the best predictor of metabolic syndrome. CONCLUSION: Both higher %FM and lower %LM affect cardiometabolic health and can be used as predictors for metabolic syndrome. However, the %FM to %LM ratio was the best predictor of systemic inflammation and cardiometabolic disorders in this group of SCI participants, suggesting that they both contribute to the statistical model.


Assuntos
Doenças Cardiovasculares , Síndrome Metabólica , Traumatismos da Medula Espinal , Masculino , Humanos , Feminino , Índice de Massa Corporal , Densidade Óssea , Estudos Transversais , Proteína C-Reativa , Interleucina-6 , Traumatismos da Medula Espinal/complicações , Composição Corporal , Inflamação , Absorciometria de Fóton
20.
J Clin Med ; 11(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079048

RESUMO

A 25-year-old male with T3 complete AIS A was implanted with percutaneous spinal cord epidural stimulation (scES; eight contacts each) leads and a Medtronic Prime advance internal pulse generator. The two leads were placed at the midline level to cover the region of the T11-T12 vertebrae. Five days after implantation, X-ray showed complete migration of the left lead outside the epidural space. Two weeks after implantation, reprogramming of the single right lead (20 Hz and 240 µs) after setting the cathode at 0 and the anode at 3 resulted in target activation of the abdominal muscles and allowed for the immediate restoration of trunk control during a seated position, even with upper extremity perturbation. This was followed by achieving immediate standing after setting the single lead at -3 for the cathode and +6 for the anode using stimulation configurations of 20 Hz and 240 µs. The results were confirmed with electromyography (EMG) of the rectus abdominus and lower extremity muscles. Targeted stimulation of the lumbosacral segment using a single lead with a midline approach immediately restored the trunk control and standing in a person with complete paraplegia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...